

Ions, ionic bonds and ionic compounds Study Sheet #2

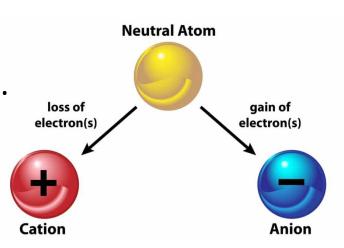
Learning Objectives:

- Define ions, ionic bonds, and ionic compounds.
- Explain how ionic bonds form.
- Describe the properties of ionic compounds.
- Identify and name common ionic compounds.

Key words:

- **❖**lons
- Cations
- **Anions**
- **❖**Octet Rule
- **❖** Ionic bonds
- Ionic compounds

What are ions?


Ions are electrically charged particles formed when atoms gain or lose electrons.

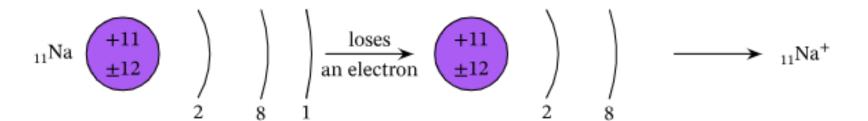
These charges can be positive or negative.

Cations (positive ions):

Atoms lose one or more electrons to become positively charged.

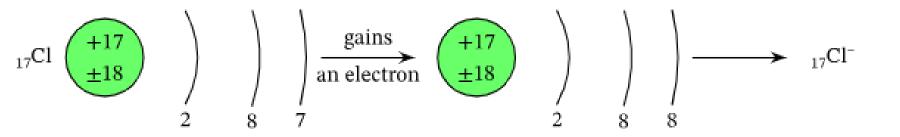
Metals often form cations as they have fewer electrons in the outermost energy level and readily give them away.

Anions (negative ions):


Atoms gain one or more electrons to become positively charged.

Nonmetals often form anions as they attract additional electrons.

 Octet rule: atoms tend to have a stable electron configuration, similar to noble gases, which typically have 8 electrons in their outermost energy level (except for elements in period#1 / Hydrogen and Helium).


Atoms gain or lose electrons to reach this stable configuration.

Formation of sodium ion:

The **sodium** ion has **8** electrons in its outer shell. Its outer shell is full, so the ion is stable.

Formation of chloride ion:

The **chloride** ion has **8** electrons in its outer shell. Its outer shell is full, so the ion is stable.

You can use the periodic table to predict whether an atom will form an anion or a cation, and you can often predict the charge of the resulting ion.

The name of a metal ion is the same as the name of the metal atom from which it forms, so Ca²⁺ is called a calcium ion.

When naming a non-metal ion, the suffix –ide is added to the root name of the element.

O⁻² is called an oxide ion.

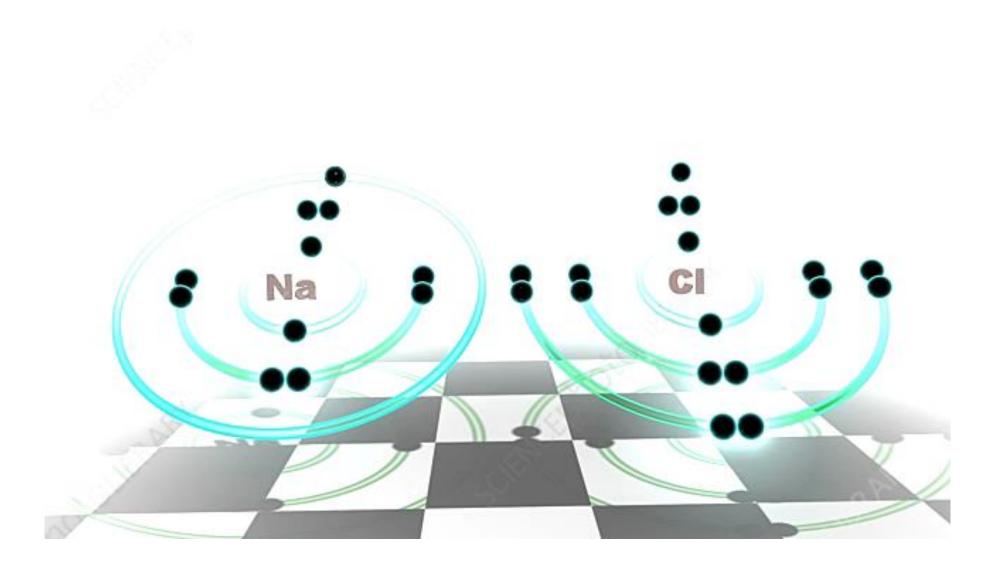
							Hydrogen										He Helium 2
7 Li Lithium 3	Be Beryllium							1				Boron 5	C Carbon 6	N Nitrogen 7	Oxygen 8	Fluorine	Ne Neon
Na Sodium	Mg Magnesium											Al Aluminium 13	Si Silicon 14	Phosphorus	32 Sulfur 16	35.5 Cl Chlorine 17	Ar Ar Argon 18
39 K Potassium 19	Ca Calcium	SC Scandium 21	48 Ti Titanium 22	Vanadium 23	Cr Chromium 24	Mn Manganese	Fe Iron 26	CO Cobalt 27	59 Ni Nickel 28	63.5 Cu Copper 29	65 Zn Zinc 30	Ga Gallium 31	Germanium	75 As Arsenic	79 Se Selenium 34	Br Bromine	Kr Krypton 36
Rb Rubidium	Sr Strontium	89 Y Yttrium 39	91 Zr Zirconium 40	Nb Niobium	MO Molybdenum	99 TC Technetium 43	Ruthenium	Rh Rh Rhodium	Palladium	108 Ag Silver	Cd Cadium	In In Indium	119 Sn Tin 50	Sb Antimony	Te Tellurium	127 lodine 53	Xe Xenon 54
CS Caesium	Ba Barium 56	57-71	178 Hf Hafnium 72	Ta Tantalum 73	184 W Tungsten 74	Rhenium	OS Osmium 76	192 Ir Iridium 77	195 Pt Platinum 78	197 Au Gald 79	Hg Mercury 80	204 Thallium 81	207 Pb Lead 82	Bi Bismuth	PO Polonium 84	(210) At Astatine 85	Rn Radon 86
(223) Fr Francium 87	(226) Ra Radium 88	89-103	(261) Rf Rutherfordium 104	(262) Db Dubnium 105	(266) Sg Seaborgium 106	(264) Bh Bohrium 107	(269) HS Hassium 108	(268) Mt Meitnerium 109	(269) DS Darmstadtium	(272) Rg Roentgenium 111	(285) Cn Copernicium 112	(286) Nh Nihomium 113	(289) F I Flerovium 114	(289) MC Moscovium 115	(293) LV Livermorium 116	(294) TS Tennessine 117	(294) Og Oganesson 118

3 4 5 6 7 8

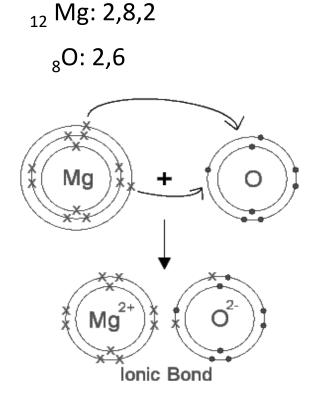
	139	140	141	144	(145)	(150)	152	157	159	163	165	167	169	173	175
Lanthanide Series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	Lanthanum 57	Cerium 58	Prascodymium 59	Neodymium 60	Promethium 61	Samurium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Halmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
Actinide Series	(227)	232	231	238	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(266)
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	Actinium 89	Thorium 90	Protractinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	II I	Berkelium 97	Californium 98	l	Fermium 100	Mendelevium 101		Lawrencium 103

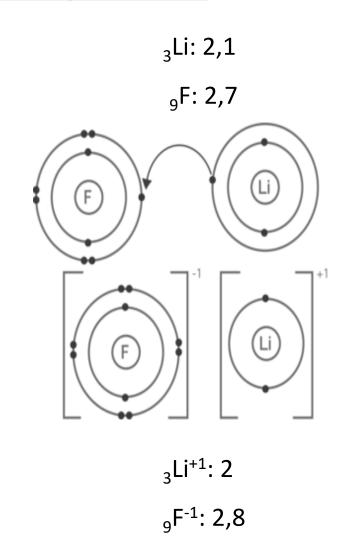
What is ionic bonding?

- *lonic bonding* is the electrostatic attraction between positive and negative ions.
- In ionic bonds, the metal loses electrons to become a positively charged cation, whereas the nonmetal accepts those electrons to become a negatively charged anion.


 Ionic bonds require an electron donor, often a metal, and an electron acceptor, a nonmetal.

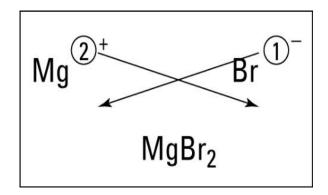
In sodium chloride, ionic bonds hold the ions together in a giant structure.

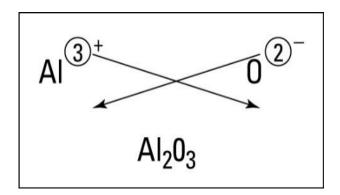



Formation of the ionic bond in Sodium chloride

• Examples of formation for 2 ionic compounds:

₁₂ Mg⁺²: 2,8 ₈O⁻²: 2,8

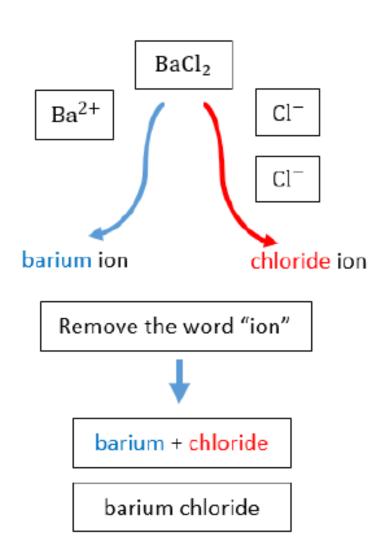



 Attraction forces between the positive and negative ions formed is called lonic Bonding.

Chemical Formulae for Ionic Compounds:

- 1- Write the symbol and charge of the metal first and the non-metal second.
- 2- Transpose only the number of the positive charge to become the subscript of the non-metal, and the number of the negative charge to become the subscript of the metal.

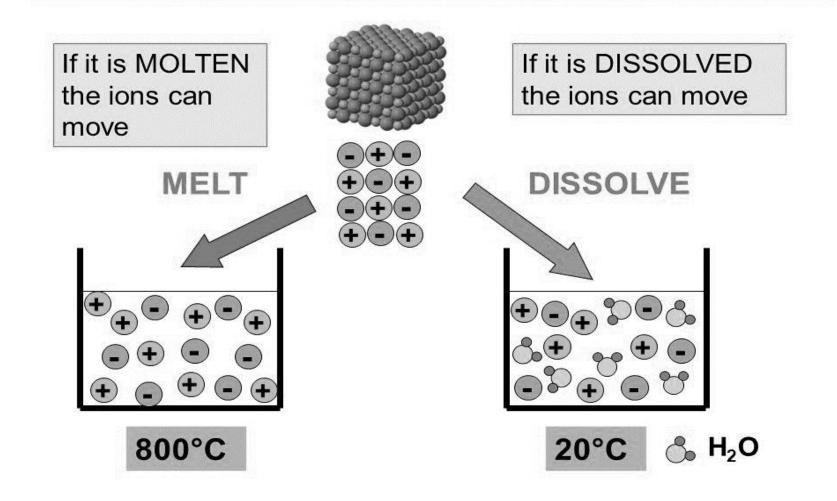
Examples of molecular formula for ionic compounds with single atomic ions:



Most compounds made up of a metal and a non-metal are ionic.

Naming Ionic Compounds:

- Always name the cation before the anion; in the chemical formula, the cation will always appear first as well.
- When naming the cation within an ionic compound, we don't include the word ion or the charge . We only have to name the element that the ion came from .
- When naming the anion within an ionic compound, the suffix –ide is added to the root name of the element.



Ionic bonding and physical properties

Ionic compounds have high melting points. This is because the electrostatic attraction between oppositely charged ions is strong.

Ionic compounds are brittle, If you drop a crystal of an ionic compound, it breaks between one row of ions and another. The broken pieces have straight ridges.

As ionic compounds are made of CHARGED IONS, they can CONDUCT ELECTRICITY but ONLY if the ions can MOVE.

