

Stage (6-8)

1st Semester | 2023-2024

Subject: CHEMISTRY **Objectives:** • To investigate the density of solids and liquids **Chapter:** Periodic trends/ Density Answer key

Title: in few words, write a title that describes what you are aiming to determine with this experiment.

Investigating the density of different materials.

Objective: why are you conducting this experiment?

To find the density of all the objects by finding their volume and mass.

Hypothesis: Is density a property of a material like wood, or of an object like a wooden chair?

Density is a property of a material

Regular Solids

Procedure: list the steps will you take to conduct this experiment.

- 1. Start by calculating the volume of the different samples by recording the length, width and height of each sample. <u>Record the readings in table 1</u>.
- 2. Use the balance to measure the mass of each shape. <u>Record the reading</u> <u>in table 2.</u>
- 3. Use the Density Formula to calculate the density.

Observation: What data did you collect in this experiment?

Table 1

Specimen	Length (cm)	Width (cm)	Height (cm)	Volume (cm ³)
1	Different Values will be taken but, in the end, to find the			
	volume you follow the rule:			
2	$V = l \times w \times h$			

Table 2

Specimen	Mass of the specimen (g)	Volume of the specimen (<i>cm</i> ³)	Density of the specimen (g/cm^3)
1	Different Values will be taken but, in the end, to find the density you		
		follow the rule:	
2		$D = \frac{m}{V}$	

Irregular Solids

Procedure: list the steps will you take to conduct this experiment.

- 1. Measure the mass of each shape. <u>Record the results in table 4</u>
- 2. Measure the volume of the samples **<u>Record the results in table 3</u>**
- *I.* Use a measuring cylinder filled with 50cm³ of water.
- *II.* Drop the object into the graduated cylinder.
- *III. Record the level of the fluid with the object.*
- *IV.* Subtract the original reading from the new reading to get the volume of the solid.
 - **3**.Use the Density Formula to calculate the density.

Observation: What data did you collect in this experiment?

Table 3

Specimen	Initial Volume (ml)	Final Volume (ml)	Volume of specimen (ml)
1	Different Values will be taken but, in the end, to find the		
	volume you follow the rule: $V = V_{Final} - V_{Initial}$		
2			

Table 4

Specimen	Mass of the specimen (g)	Volume of the specimen (<i>cm</i> ³)	Density of the specimen (g/cm^3)
1	Different Values will be taken but, in the end, to find the density you		
	follow the rule:		
2		$D = \frac{m}{V}$	

<u>Liquids</u>

Procedure: list the steps will you take to conduct this experiment.

- **1.** Use the measuring cylinder to measure the volume of each liquid.
- 2. Measure the mass of each liquid. <u>Record the results in table 5</u>
- *I.* Find the mass of the empty cylinder.
- *II. Fill the cylinder with the required volume.*
- *III.* Use the balance to measure the mass of the filled cylinder.
- *IV.* Subtract the mass of the empty cylinder from the filled cylinder to find the mass of the liquid.
 - **3.** Use the Density Formula to calculate the density.

Observation: What data did you collect in this experiment?

Specimen	Initial mass (g)	Final mass (g)	Mass of specimen (g)
1	Different Values will be taken but, in the end, to find the		
2	mass you follow the rule:		
3	$m = m_{Final} - m_{Initial}$		

Table 5

Table 6

Specimen	Mass of the specimen (g)	Volume of the specimen (cm^3)	Density of the specimen (g/cm^3)
1	Different Values will be taken but, in the end, to find the density you		
2	follow the rule:		
3		$D = \frac{m}{V}$	

Conclusion:

1) What conclusion or theory can you state regarding this experiment?

We see that each material had a different density based on its own physical properties

Critical thinking:

If the mass of an object was doubled, what would happen to the density of it?

It will be doubled (for the same volume of samples)