

Worksheet 6 |

Lower Secondary Stage (6-8)

1st Semester | 2023-2024

Subject: Math **Objectives:**

Chapter: 3

- To work with simple powers and roots using mental methods
- To work with fractional and negative powers, and reciprocals
- To use the laws of indices to simplify numerical expressions

The laws of indices:

$$a^m \times a^n = a^{m+n} \tag{1}$$

$$\frac{a^m}{a^n} = a^{m-n} \tag{2}$$

$$(a^m)^n = (a^n)^m = a^{mn}$$
 (3)

$$a^{-m} = \frac{1}{a^m} \tag{4}$$

$$\left(\frac{a}{b}\right)^{-m} = \left(\frac{b}{a}\right)^{m} \tag{5}$$

$$a^0 = 1 \tag{6}$$

$$a^{\frac{1}{n}} = \sqrt[n]{a} \tag{7}$$

$$a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m} \tag{8}$$

$$\sqrt{a} \times \sqrt{a} = a \tag{9}$$

where **a**, **m** and **n** are real numbers.

Notes on powers with negative integers:

1- A negative base raised to an **odd** power will **always** be negative!

Example:

$$(-1)^3 = -1 \times -1 \times -1 = -1$$

$$(-2)^5 = -2 \times -2 \times -2 \times -2 \times -2 = -32$$

$$(-3)^3 = -27$$

2- A negative base raised to an even power will always be positive!

$$(-1)^2 = -1 \times -1 = 1$$

$$(-2)^4 = -2 \times -2 \times -2 \times -2 = 16$$

3- Note **brackets** when expanding the exponents.

Examples:

$$-2^2 = -(2 \times 2) = -4$$
 the square is only for the two.

$$(-2)^2 = -2 \times -2 = 4$$
 the square is for negative two.

4-The power can be **distributed** over multiplication and division but **NOT** over addition and subtraction.

Examples:

$$(3y)^3 = 3^3y^3 = 27y^3$$

$$(\frac{2}{x})^2 = \frac{2^2}{x^2}$$

$$(3+y)^2 = (3+y)(3+y) \neq 3^2 + y^2$$

$$(y-5)^2 = (y-5)(y-5) \neq y^2 - 5^2$$

Q1: Find the exact values of:

$\sqrt[3]{8}$ =	$\sqrt[3]{-27} =$
$\sqrt[3]{\frac{1}{8}} =$	$\sqrt[3]{\frac{-8}{64}} =$
$\sqrt[3]{5} \times \sqrt[3]{25} =$	$\sqrt[3]{3\frac{3}{8}} =$

Q2: Find x:

$x^2 = \frac{4}{81}$	$2x^2 = 200$
$x^3 = 8$	$x^3 = -27$
$x^3 = 0$	$2x^3 - 50 = 200$

Q3: Find the exact values of:

$$9^{\frac{1}{2}} \times 8^{\frac{1}{3}}$$

$$16^{\frac{3}{2}}$$

$$\left(\frac{3}{4}\right)^{-2}$$

$$\sqrt{(2\times2\times3\times3\times5\times5)}$$

Q4: Find the exact values of:

$$a^{\frac{1}{2}} \times a^{\frac{1}{2}} =$$

$$a^{\frac{1}{3}} \times a^{\frac{1}{3}} \times a^{\frac{1}{3}} =$$

$$a^{\frac{1}{4}} \times a^{\frac{1}{4}} \times a^{\frac{1}{4}} \times a^{\frac{1}{4}} =$$

Q5: Find the exact values of:

a) $64^{\frac{1}{3}}$	b) 125 ^{1/3}	c) $25^{\frac{3}{2}}$
d) $8^{\frac{5}{3}}$	e) $16^{\frac{3}{4}}$	f) 4 ⁻³
g) $4^{-\frac{1}{2}}$	h) $27^{-\frac{2}{3}}$	$9^{-\frac{1}{2}} \times 2^3$
j) (3 <i>e</i>) ⁰	k) $8^{-\frac{2}{3}}$	$\left(\frac{25}{16}\right)^{-\frac{3}{2}}$
m) $\left(\frac{8}{27}\right)^{-\frac{2}{3}}$	n) $(\sqrt{3})^2$	o) $\sqrt{2^4 \times 9}$

Q6: Simplify

$$\left(\frac{64x^6}{25y^2}\right)^{-\frac{1}{2}}$$

Q7:

- a) Simplify, leaving your answer in index form
 - i) $4^7 \times 4$
- ii) $6^3 \div 6^5$
- **b)** $7^y = 1$

Find the value of y.

Q8: Evaluate the following.

Give your answers as fractions.

- a) 3⁻⁴
- **b)** $\sqrt[3]{\left(\frac{8}{27}\right)^2}$
- c) $\left(\frac{\sqrt{6}}{4}\right)^4$

Q9: a) Find, as a fraction, the value of $\frac{4+2^3}{(4+2)^2}$

b) Write your answer to part a) as a decimal.

Q10:
$$3^n = \frac{1}{9}$$

Find the value of n.

Q11:
$$3 \times \sqrt{27} = 3^n$$

Find the value of n.

Q12: **a)** Simplify, leaving your answer in index form **i)**
$$5^4 \times 5^8$$
 ii) $9^7 \div 9^4$ **b)** Solve $\frac{3^8 \times 3^5}{3^n} = 3^4$

i)
$$5^4 \times 5^8$$

ii)
$$9^7 \div 9^4$$

b) Solve
$$\frac{3^8 \times 3^5}{3^n} = 3^4$$