

Reviewing the Periodic table, Acids and Alkalis

Cambridge Assessment

International Education

Learning Objectives:

- Understand that the periodic table is a way to sort elements.
- Identify different groups in the periodic table.
- Describe Acids , Bases and Alkalis.

Key words:

- *Atom
- ✤Element
- Compound
- Chemical Symbol
- Chemical formula
- ✤pH indicator
- Neutralization

Dmitri Mendeleev

A Russian scientist born in 1834. He created the Periodic Table almost 150 years ago.

When creating the Periodic Table, Mendeleev even predicted elements would be discovered in the future. Those elements have, in fact, been discovered in recent years

> As a reminder of the importance of Mendeleev's great work, element number 101 was named after him. It is appropriately named "Mendelevium!"

The Periodic Table

A column in the periodic table is called a group. The groups are numbered along the top, from Group 1 to Group 7, with Group 8 on the end.

The middle section is not included in this group system because the elements here behave differently to those in the labelled groups.

1	2											3	4	5	6	7	8
							1 H Hydrogen 1										4 He Helium 2
7 Li Lithium 3	9 Be Beryllium 4											11 B Boron 5	12 Carbon 6	14 N Nitrogen 7	16 O Oxygen 8	19 F Fluorine 9	20 Ne Neon 10
23 Na Sodium 11	24 Mg Magnesium 12											27 Al Aluminium 13	28 Si Silicon 14	31 P Phosphorus 15	32 S Sulfur 16	35.5 Cl Chlorine 17	40 Argon 18
39 K Potassium 19	40 Ca Calcium 20	45 SC Scandium 21	48 Ti Titanium 22	51 V Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron 26	59 Co Cobalt 27	59 Ni Nickel 28	63.5 Cu Copper 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 As Arsenic 33	79 Se Selenium 34	80 Br Bromine 35	84 Kr Krypton 36
85 Rb Rubidium 37	88 Sr Strontium 38	89 Y Yttrium 39	91 Zr Zirconium 40	93 Nb Niobium 41	96 Mo Molybdenum 42	99 TC Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadium 48	115 In Indium 49	119 Sn ^{Tin} 50	122 Sb Antimony 51	128 Te Tellurium 52	127 lodine 53	131 Xe Xenon 54
133 CS Caesium 55	137 Ba Barium 56	57-71	178 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Iridium 77	195 Pt Platinum 78	197 Au Gald 79	201 Hg Mercury 80	204 TI Thallium 81	207 Pb Lead 82	209 Bi Bismuth 83	(209) PO Polonium 84	(210) At Astatine 85	(222) Rn Radon 86
(223) Fr Francium 87	(226) Ra Radium 88	89-103	(261) Rf Rutherfordium 104	(262) Db Dubnium 105	(266) Sg Seaborgium 106	(264) Bh Bohrium 107	(269) HS Hassium 108	(268) Mt Meitnerium 109	(269) DS Darmstadtium 110	(272) Rg Roentgenium 111	(285) Cn Copernicium 112	(286) Nh Nihomium 113	(289) FI Flerovium 114	(289) Mc Moscovium 115	(293) LV Livermorium 116	(294) TS Tennessine 117	(294) Oganesson 118

	139	140	141	144	(145)	(150)	152	157	159	163	165	167	169	173	175
Lanthanide	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Series	Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samurium	Europium	Gadolinium	Terbium	Dysprosium	Halmium	Erbium	Thulium	Ytterbium	Lutetium
	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	(227)	232	231	238	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(266)
Actinide	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Series	Actinium	Thorium	Protractinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103

What is proton number?

As you know, an atom has a nucleus. The nucleus is made up of two types of sub-atomic particle:

- positively charged protons
- neutrons, with no charge.

Each element has a different number of protons in its atoms. A helium atom has two protons. A lithium atom has three protons. A gold atom has 79 protons. The number of protons in an atom of an element is its **proton number**. Proton number is also called **atomic number**.

 A lithium atom has three protons. The proton number of lithium is 3.

How is proton number linked to the periodic table?

In the periodic table, the elements are arranged in order of proton number.

					1 hydrogen												2 helium
3 Sithium	4 beryllium				,							5 boran	6 carbon	7 nitrogen	8 corygen	9 fluorine	10 neon
11 sodium	12 magnesium											13 aluminium	14 silicon	15 phosphorus	16 sultur	17 dilorine	18 argon
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
potassum	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zine	galium	gemanium	arsenic	selenium	bromine	krypton
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
rubidkum	strantium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	Indum	1n	antimory	tellurium	iodine	xenon
55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
caesium	barium	Ianthanoids	hatnium	taritalum	tungsten	rhenium	osmium	Iridium	platinum	gold	mercury	thailium	lead	bismuth	polonium	astatine	radon
87	88	89–103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
francium	radium	actinoids	rutherfordium	dubnium	seeborgium	bohrium	hassium	meitnerium	damstadtum	roentgenium	opernicium	nbonum	flerovium	moscovium	Ivermorium	tennessine	oganeson

-	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	anthaoum	cerium	præeodymium	neodymium	promethium	samarium	europium	gadolinium	tertium	dysprosum	holmium	erbium	thuliam	ytterbium	lutetium
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	actinium	thorium	prosactinium	utanium	neptunium	plutonium	amerioum	curitum	berkehum	californium	einsteinium	fermium	mondolevium	nobelium	lawrencium

▲ This periodic table shows the proton number of each element.

The arrangement of the electrons in an atom is its **electron configuration**. The diagram below shows the electron configurations of the first 18 elements of the periodic table. The elements are arranged as they are in the periodic table.

Can you see a pattern in the electron structures? Atoms of elements in the left column (Group 1 of the periodic table) have one electron in their outer shell. Atoms of elements in the next column (Group 2) have two electrons in their outer shell. Atoms of all elements that are in the same column of the periodic table have the same number of outer shell electrons.

▲ Electron configuration of the first 18 elements.

🜒 Key points

- The electron
 - configuration of an atom describes how its electrons are arranged.
- Each electron shell has a maximum number of electrons.

element A substance that cannot be broken down into another substance.

Each element is made up of its own type of atom. compound A substance made from two or more different elements that have been chemically joined. Example:

 H_2O

23 Na Sodium 11

chemical symbol

Most chemical elements are **represented symbolically by two letters**, generally the first two in their name.

 H_2O

Let's review

• Define the following term; atomic number, mass number, a period.

atomic number : The number of protons in an atom
mass number : The number of protons + number of neutrons in an atom
a period: a row of elements having the same number of electron shells

Acids

- Substances that donate hydrogen ions, H⁺¹,, when dissolved in water.
- Acids conduct electricity well, due to the positive and negative ions in the solution. Acids turn blue litmus paper into red
- Corrosive: Can burn skin and react with metals. (stored in glass containers)
- All acids contain the element Hydrogen.
- Acids have a pH ranging from 0-6

According to concentration acids are classified into :

- A- Concentrated acids: more number of acid particles dissolved in water, so more H⁺¹ ions present. (corrosive – can destroy skin and attack metals)
- B- Diluted acids: low number of acid particles dissolved in water, so less H⁺¹ ions present. (irritant – skin may become red and blistered)

Bases and Alkalis

- Substances that form hydroxide ions (OH⁻¹) ions when <u>dissolved</u> in water
- Not all bases dissolve in Water. When a Base dissolves in water, the solution is called Alkali.
- Taste bitter
- Can burn skin (caustic).
- Alkaline solutions conduct electricity well.
- Alkalis turn red litmus paper into blue
- Have a pH ranging from 8-14

Universal Indicator

A mixture of indicators that give range of colors, used to show how strong or weak an acid or an alkali is.

Neutralization

- It is a chemical reaction between an acid and an alkali to form water and salt.
- Water is neutral (pH=7), therefore, the pH changes when we mix acids and alkalis.

