

Science Worksheet #6 Chemical Bonding

Name:

Date: /5/2023

Grade 8 ()

Ionic Bonding Practice

1. What are valence electrons?

Electrons located in the outermost shell of an atom.

2. Why are valence electrons important?

They determine how atoms react in a chemical reaction.

3. How can you tell how many valence electrons an element has?

Using the periodic table, find the group number of the element.

4. Between what types of elements do ionic bonds form? **Metals and non-metals.**

5. What happens to valence electrons when ionic bonds are formed?

Electrons are transferred between atoms (lost or gained)

6. Why are cations positive?

They lose valence electrons, so they have more positive protons.

7. Why are anions negative?

They gain valence electrons, so they have more negative charges.

8.Referring to the periodic table, find the charge of the following:

	Na	Se	Ca	Mg	AI	1	Р	0
lon formed	Na ⁺¹	Se ⁻²	Ca ⁺²	Mg ⁺²	Al ⁺³	I -1	P ⁻³	O ⁻²
Cation or Anion?	Cation	Anion	Cation	Cation	Cation	Anion	Anion	Anion

9. Do chemical formulas have a charge even though they may be made from ions? Why?

No, because ionic compounds must be electrically neutral; the positive and negative charges cancel each other.

10. What are the 2 purposes of subscripts in chemical formulas?

Describes the types of atoms and their numbers in an element or compound.

11. Write good chemical formulas for each of the following combinations of elements: (use the periodic table to find the valency of the elements)

Lithium & Chlorine	Cesium & Fluorine
LiCI	CsF
Potassium & Oxygen	Rubidium & Sulfur
K ₂ O	Rb ₂ S
Calcium & Bromine	Barium & Iodine
CaBr ₂	Bal ₂
Magnesium & Sulfur	Strontium & Oxygen
MqS	SrO

Covalent Bonding Practice

1. Describe how a covalent bond forms.

In covalent bonds, valence electrons are shared between atoms.

- 2. Covalent bonds form between what kinds of elements? Non-metals
- 3. For each element, draw the Lewis dots diagram (based on valence electrons).

4. For each compound, draw the Lewis dot diagram.

Types of Chemical Bonds

- a. Classify the following as ionic (metal + nonmetal) or covalent (nonmetal + nonmetal).
- b. Determine the charge for each element or polyatomic ion in each **ionic** compound.

1. CaCl ₂ ionic/ Ca ⁺² Cl ⁻¹	11. MgO ionic/ Mg ⁺² O ⁻²
2. CO ₂ covalent	12. NH ₄ Cl both
3. H ₂ O covalent	13. HCI covalent
4. BaSO ₄ both	14. KI ionic/ K ⁺¹ I ⁻¹
5. K ₂ O ionic/ K ⁺¹ O ⁻²	15. NaOH both / Na ⁺¹ OH ⁻¹
6. NaF ionic/ Na ⁺¹ F ⁻¹	16. NO ₂ covalent
7. Na ₂ CO ₃ both/ Na ⁺¹ CO ₃ ⁻²	17. AIPO ₄ both/ AI+ ³ PO ₄ - ³
8. CH ₄ covalent	18. FeCl ₃ ionic/ Fe ⁺³ Cl ⁻¹
9. SO ₃ covalent	19.P ₂ O ₅ covalent
10. LiBr ionic/ Li ⁺¹ Br ⁻¹	20. N_2O_3 covalent

		-		8 =		-	8.			8 s		•	2			8		_	85					-	1 9 5	e0		200
		18	Ľ	4.00 Holl	2	ž	20.1) Nac	₽	Ā	998 904	8	¥	839	3	×	131.2	a	2	(22) Bado				۲,	1	174.9 LU001	₫.	5	(262 Lawron
				11		Ľ	18.998 Floring	4	ö	35.453 Chlorine	8	<u>ה</u>	79.904	3	н	126.904	8	¥	(210) Astatine				2	م	173.04 VTerbium	102	ĉ	(259) Nobelium
				16	8	0	15.999 Oncer	9	s	32.066 Suffur	뵹	s	78.96	25	P	127.60	84	2	(208) Pointum				69	Ē	168.934 Thuium	101	M	(258) Mendelevium
			p	15	7	z	14.007 Nitroan	15	٩.	30,974 Phosofrous	8	As	74.922	15	Sb	121.763	83	B	208.900 Bismuth				88	ш	167.26 Erbium	8	5	(257) Fermium
				1	9	ပ	12.011 Carbon	14	Si	28.086 Silicon	32	e	72.61	50	S	118.71	82	8	207.2 Load		e those of isotope.		67	운	164.930 Holmium	66	ű	(252) Einsteinium
14	ŝ		- ulicou	13	9	8	10.81 Beren	13	A	26.982 Aluminum	31	g	69.72	49	5	114.82	18	F	204.380 Thelium		entheses an ost common		99	2	162.50 Dysprosium	88	5	(251) Californium
Ļ			"							12	8	Z	68.39	\$	ខ	112.41	8	ĥ	200.59 Mercury		ribers in par stable or mo		8	₽	158.925 Terbium	26	ž	(247) Beriofium
c number	Symbol mic mass									ŧ	8	3	63.546	47	Ag	107.868	202	Au	196.967 Gold		Mass nur the most		4	B	157.25 Gadolinium	8	B	(247) Curlum
Atomic	Ator									9	28	z	58.69	46	Р	106.42	78	đ	195.08 Platinum	110		(268)	89	3	151.97 Europium	38	Am	(243) Americium
										6	27	റ്	58.933	45	f	102.906	11	h	192.22 Midum	109	Mt	(266) Melherium	62	Sm	150.36 Samarium	8 8	Ъ	(244) Piutonium
nents										8	36	Fe	56.847	44	2	101.07	76	ő	190.23 Osmium	108	Hs	(265) Hassium	61	E	(145) Promothium	8;	d	237.048 Neptunium
e Eler										7	ĸ	Mn	54.938	43	ř	(96)	75	å	186.207 Fherium	107	ЧB	(262) Bohrium	8	PZ	144.24 Neodymium	8:	>	238.029 Uranium
of the										9	z	ັບ	51.996	42	Ŷ	95.94	74	3	183.84 Turosten	108	ß	(263) Seatorgium	8	à	140.908 Presedynium	2	в	231,008 Protectinium
Table										9	8	>	50.942	41	q	92.906	g	Ta	180.948 Tartaium	105	8	(262) Dubnium	8	రి	140.12 Cerium	8	£	232.008 Thorium
dic										4	8	F	47.88	9	4	91.224	2	÷	178.49 Hathium	104	2	(261) charloolun			/	-	~	/
Peric										8	2	ഗ്ഗ	44.966	39	>	905.88	6	P	138.906	8	Ac	227.028 Actinum R.		e Series			e Series	
				2	4	Be	9.012 Bentlum	12	Mg	24.305 Aspresium	8	ő	40.08	98	Š	87.62	95	Ba	137.33 Barlum	88	Ra	226.025 Nadum		anthanide			Actinide	
		duon 1	- 1	1.008 Hydrogen	~	5	6.941 Uthion	ŧ	Na	22.990 Sodium A	9	¥	39.098	37	å	85.468	5	ő	132.905 Cesium	87	ድ	(223) Francium		Ľ				
					-	0		_	e		-		,	1	u		1	6	,	-	~							
	Acc	redi	ted by	E	S The second		Cambr	C amb ntern ridge	ridge ationa Interna	Assess al Educ ational	smer atior Scho	nt n	e	Je:	xce	el 🔛		С	COUNCEL OF	4L		6			Eco-Sa	chools		