Workbook Questions

11 Making salts

11.1 Making salts - acids and metals

- 1 Dasbala
- 2a chloride
- b nitric
- c sulfate
- 3 A, D, F, B, E, C
- 4a zinc chloride
- b magnesium sulfate
- c magnesium chloride
- d iron sulfate
- Flace a lit splint inside a container with the gas. If the splint goes out and a squeaky pop sound is made, the gas was hydrogen.

11.2 Making salts - acids and carbonates

- 1 See the table at the bottom of the page.
- 2a copper chloride
- b carbon dioxide
- 3a copper carbonate + hydrochloric acid → copper chloride + carbon dioxide + water
- b zinc carbonate + sulfuric acid → zinc sulfate + carbon dioxide + water
- c magnesium carbonate + nitric acid → magnesium nitrate + carbon dioxide + water
- d copper carbonate + sulfuric acid → copper sulfate + carbon dioxide + water
- **4a** The carbonate will stop bubbling.
- **b** B, E, F
- c E, F

11.3 Making salts - acids and alkalis

- 1a Sodium chloride
- b Sodium nitrate
- c Potassium sulfate
- d Potassium chloride
- 2a hydrochloric acid + sodium hydroxide → sodium chloride + water
 - b nitric acid+ sodium hydroxide → sodium nitrate + water
 - c nitric acid + potassium hydroxide → potassium nitrate + water
- d hydrochloric acid + potassium chloride → potassium chloride + water
- 3a i Use a measuring cylinder to accurately measure 25.00 cm³ of sodium carbonate solution.
 - ii Place this solution in a conical flask. Add a few drops of Universal indicator solution.
 - iii Add hydrochloric acid to the sodium carbonate solution and indicator. Stop adding when the mixture is green.
 - iv Add charcoal powder to the mixture. Filter the mixture. Keep the **colourless** solution.
 - v Pour the solution into an evaporating basin.
 - vi Heat the solution until half the solution has evaporated. Place the evaporating basin in a warm place for several days for the remaining water to evaporate.
- b So he can determine when the sodium carbonate has been neutralized.
- c To remove the charcoal powder (which has removed the colour).

	copper carbonate	magnesium carbonate	zinc carbonate
hydrochloric acid	copper chloride	magnesium chloride	zinc chloride
nitric acid	copper nitrate	magnesium nitrate	zinc nitrate
sulfuric acid	copper sulfate	magnesium sulfate	zinc sulfate

Textbook Questions

11.5 Review

- 1 A compound made when a metal replaces the hydrogen in an acid.
- 2a magnesium sulfate
 - b zinc chloride
 - c magnesium nitrate
- d copper chloride
- e zinc sulfate
- f copper nitrate
- 3a Collect the hydrogen gas, place a lit splint inside. If the splint makes a squeaky 'pop' and goes out, the gas is hydrogen.
 - b bubbles forming
- 4a magnesium nitrate + hydrogen
- b zinc sulfate + hydrogen
- c magnesium chloride + hydrogen
- d copper chloride + carbon dioxide + water
- e zinc nitrate + water
- 5a sulfuric acid
 - b i copper sulfate + carbon dioxide + water
 - ii copper carbonate + sulfuric acid → copper sulfate + carbon dioxide + water
 - iii copper sulfate + water
 - iv copper oxide + sulfuric acid → copper sulfate + water
 - c i copper sulfate, water, copper oxide
 - ii filtration
 - d Transfer the solution into the evaporating dish.

 Using the beaker set up a water bath with the evaporating dish on top. Gently heat the beaker, evaporating the water in the evaporating dish, leaving copper sulfate crystals behind

- 6a i carbon dioxide
 - ii copper carbonate + hydrochloric acid → copper chloride + carbon dioxide + water
 - b A, D, F, B, E, C, G, H
- 7a zinc + hydrochloric acid → zinc chloride + hydrogen

c Heating the evaporating dish over a water bath heats the zinc chloride more evenly and gently, reducing spitting and reducing the loss of zinc chloride.