

Unit 8: Geometry

The book.

Chapter 3

Check in

c i, ii, xi b viii, x 1 a vi, ix

d iii, iv e v, vii, xii

2 a A, D, G, L b C, I, K c A, B, D, E, G, J, L

d A, D, G, L e D, E, G

Exercise 3A

- pentagon 5, hexagon 6, octagon 8
- pentagon 5, hexagon 6, octagon 8
- 3 and 3
- a All of the angles in a regular pentagon are 108 degrees
 - b All of the angles in a regular hexagon are 120 degrees
 - c All of the angles in a regular octagon are 135 degrees

Name of regular Polygon	Number of sides	Number of lines of symmetry	Order of rotational symmetry
Square	4	4	4
Hexagon	6	6	6
Octagon	8	8	8
Pentagon	5	5	5

The number of lines of symmetry equals the order of rotational symmetry for regular polygons

6 20

Exercise 3B

- 1 a yes
- 2 a yes
- b yes
- c no

- 3 a yes
- b yes
- 4 a ABC and QRP, KLM and GJH, XYZ and TSU, DEF and NVW
 - c KLM and GJH, XYZ and TSU, DEF and NVW
- 5 a angle Q
 - b angle $A \rightarrow$ angle Q, angle $B \rightarrow$ angle R, angle $C \rightarrow$ angle P
- 6 angle K → angle G, angle L → angle J, angle M → angle H, angle X → angle T, angle Y → angle S, angle Z → angle U; angle D → angle N, angle E → angle V, angle F → angle W
- 7 a QR b AB \rightarrow QR, BC \rightarrow RP, CA \rightarrow PQ
- 8 KL \rightarrow GJ, LM \rightarrow JH, MK \rightarrow HG;
 - $XY \rightarrow TS, YZ \rightarrow SU, ZX \rightarrow UT;$
 - $DE \rightarrow NV, EF \rightarrow VW, FD \rightarrow WN$
- 9 a yes
 - b Both triangles have the same angles and side lengths
 - c angle A \rightarrow angle F, angle B \rightarrow angle E, angle C \rightarrow angle D
 - **d** AB \rightarrow EF, BC \rightarrow ED, CA \rightarrow DF
 - e because the triangles are congruent or identically equal
- 10 a yes
 - **b** angle $H \rightarrow$ angle N, angle $J \rightarrow$ angle M, angle $K \rightarrow$ angle L;
 - $HJ \rightarrow NM, JK \rightarrow ML, KH \rightarrow LN$
 - c $\Delta JHK \equiv \Delta MNL$
- 11 a RS = 6.3 cm, UV = 5 cm
 - **b** i angle RTS = 65° ii angle VUW = 70°
 - c angle UWV, 45°
 - d ST
- 12 a 22°
 - **b** angle $E = 52^{\circ}$, angle $D = 106^{\circ}$, angle $F = 22^{\circ}$
- alaxy ZKE 194m, KM = 12cm
 - 13 AB = 7 cm, AC = 5 cm, angle BAC = 100° is a possible solution, but it depends how \triangle ABC is orientated and labelled

Exercise 3C

- 1 a chord b diameter c chord
- 2 This would be longer than the diameter so is not possible.
- 3 a If you extend AB it will cross the circle at a second point so it cannot be a tangent. The angle between AB and the radius is not a right angle.

b .0

4 Sometimes true

The radius is longer than a chord that doesn't pass through the centre.

The tangent is longer than the diameter.

The diameter and a tangent are parallel.

The circumference is longer than a tangent.

Always true

The diameter is longer than a chord that doesn't pass through the centre.

The tangent at point B and the radius to point B are perpendicular to each other.

The circumference is longer than the diameter.

Never true

The radius is longer than the diameter.

The radius is longer than the circumference.

Exercise 3D

- 1 cuboids are i, ii, v, vi; triangular prisms are iv, vii; other prisms are iii, viii, ix
- 2 All cubes are prisms but all prisms are not cubes
- 3 a

Shape	Number of vertices	Number of faces	Number of edges
1. Cuboid	8	6	12
2. Cuboid	8	6	12
3. Pentagonal prism	10	7	15
4. Triangular prism	6	5	9
5. Cuboid	8	6	12
6. Cuboid	8	6	12
7. Triangular prism	6	5	9
8. Octagonal prism	16	10	24
9. Hexagonal prism	12	8	18

- b In any prism the number of edges is always a multiple of 3. In any prism the number of faces is always 2 more than the number of edges of the end face.
- 4 a B, F, G
- b A, C, D, E
- 5 a A, B
- b A, B, C, D, E
- c E, F, G
- d E
- e B, E, F, G
- fC

a

Shape	Number of vertices	Number of faces	Number of edges
A	12	8	18
В	7	7	12
C	8	6	12
D	8	6	12
E	6	5	9
F	4	4	6
G	5	5	8

- b In any pyramid the number of edges is always an even number. In any pyramid the number of faces and the number of vertices is the same.
 - In any pyramid if you halve the number of edges and then add 1 to this number you get the number of faces or vertices.

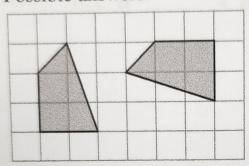
d circles

- 7 number of vertices + number of faces = number of edges + 2
- 8 a and b are cylinders

9 a 0 b 2 c curved

10 a 1 b 1 c

11 a 0 b 1 c 0 d 0


Homework book.

3A

- 1 a pentagon b octagon
- c nonagon
- 2 a heptagon, 7, 7
- b pentagon, 5, 5
- c decagon, 10, 10
- d hexagon, 6, 6
- 3 a 3 angles of 120° make 360°
 - b 360° cannot be made from multiples of 108°
 - c Yes, $135^{\circ} + 135^{\circ} + 90^{\circ} = 360^{\circ}$

3B

1 Possible answers:

- 2 A and H, B and K, C and M, D and F, E and I, J and L, G and N
- 3 a $\hat{A} \rightarrow \hat{P}$

 $\mathbf{b} \hat{\mathbf{B}} \rightarrow \hat{\mathbf{Q}}$

 $c \hat{C} \rightarrow \hat{R}$

 $d AB \rightarrow PQ$

 $e BC \rightarrow QR$

- $f AC \rightarrow PR$
- 4 a 5 cm, 12 cm
 - **b** i 30°
- ii 135°
- c DFE, 15°
- d EF
- 5 AB = DC, AD = BC, AC is common to both triangles

3C

- 1 a G
- b E
- c A
- d B

- e D
- f F
- g C
- h H

- 2 perpendicular
- Galaxy Z Flip4 is not correct. A segment can be greater than half a circle.

3D-3E

1 a

Shape	Vertices (V)	Faces (F)	Edges (E)
ı	8	6	12
ii	5	5	8
III	10	7	15
iv	12	8	18
V	8	6	12
vi	6	8	12

b
$$V + F = E + - \text{ or } V + F - 2 = E$$

c i

d i, iii, iv and v

e ii

2 a Students' diagrams b circular prism

c 1

d 2

3 a 7

b 7

4 a 9

b 16

5 a 16

b 10