

Angles on a straight line 180 (supplementary angles)

Remember that the straight angle is equal to 180°

Exercise (2): Work out the missing angles (the first one has been done for you)

1)

2)

3)

4)

5

o)

41" + 24" +35" = 100"

Angles around a point

Remember that the angles around the point add up to 360°

Exercise (3): Work out the missing angles (the first one has been done for you)

1)

3)

5)

2)

4)

6)

Angles in a triangle.

Remember that the angles in a triangle add up to 180°

The types of triangles:

- · An isosceles triangle will have two angles the same size.
- In an equilateral triangle, all angles will be 60°.
- A right-angled triangle will have one angle that is 90°, which means the other two angles will have a total of 90°.
- · A scalene triangle will have all angles of a different size.

Exercise (4): Work out the missing angles.

1)

m/U= 20"

2)

m28= 44°

3) Q 51°D p

mZQ= 93°

4).

m2K= 60°

5)

mZU= 110°

6)

mZC=_50

Angles in Quadrilaterals.

Remember that the angles in quadrilaterals add up to 360

Exercise (5): Work out the missing angles (the first one has been done for you)

1)

$$75 + 90 + 90 = 255$$

 $360 - 255 = 105$

5)

113"

4)

6)

Vertically opposite angles.

Vertically opposite angles are the angles formed opposite each other when two lines intersect. Vertically opposite angles are always equal.

Exercise (6): Work out the missing angles (the first one has been done for you)

1)

b = 132 (vertically opposite)

2)

e = 71

Corresponding and alternate angles

If we have **two parallel lines** and have a third line that crosses them as in the picture below - the crossing line is called a **transversal**

When a transversal intersects with two parallel lines eight angles are produced.

Corresponding angles.

When the angels are one interior and one exterior [1]
they are equal (corresponding)

the same side, then

Alternate angles

When the angels are **both interior** and **opposite** to each other **equal** (alternate)

Exercise (7): Work out the missing angles (the first two have been done for you)

1)

2)

x = 180 - 114 = 66

3)

41

More examples about angles:

Answer the following question.

1) Find the value of x.

1)

2)

2)

$$600 + 120 = -120$$

State whether the given pairs are supplementary or not.

2) 135°, 102°

3)

If ∠1 and ∠2 are complementary angles, and m∠1 = 74°; find m∠2.

2) If ∠5 and ∠6 are complementary angles, and m∠6 = 6°; find m∠5.

1)

2)

$$x = 10.2^{\circ}$$

5) Find the missing angles and give the reason.

1)

a 100 (alternate with 4.00)

b 100 (Vertically opp.)

c 100" (Corresponding

2)

x 111 (Corresponding with * 111)

VIII" (alterate with X 1110)

z 111° (Vertically opposite with \$111°)

