

Objective/s:

- Know that friction is a force that acts in the opposite direction of movement.
- Identify situations and decide whether friction is useful or a problem.
- Relate the amount of the force of friction to the roughness of surfaces.
- Represent results in a bar chart.

Question 1:

Draw an arrow to <u>show the direction of the force of friction</u> on each of the following pictures:

Question 2:

Determine whether friction is useful or a problem in each of the following situation:

Situation	Friction is useful	Friction is a problem
Stopping the tires of a car		
Sliding on a playground slide		
Goalkeeper's gloves		
Tying your shoe lace		
When you open a drawer		
You are Ice skating		
You are Climbing rope		

Question 3:

(a) Use the words below to complete the sentence.

colour direction speed weight

When the footballer kicks a football, the force of the kick can change the

and the _____of the ball. [2]

(b) The footballer must make sure his feet do not slip when he kicks the ball. Name the force that gives him a good grip so he does not slip.

Investigating friction in different surfaces:

Question 4:

Pedro and Arturo measured how far their toy car moved on different surfaces. These are their results.

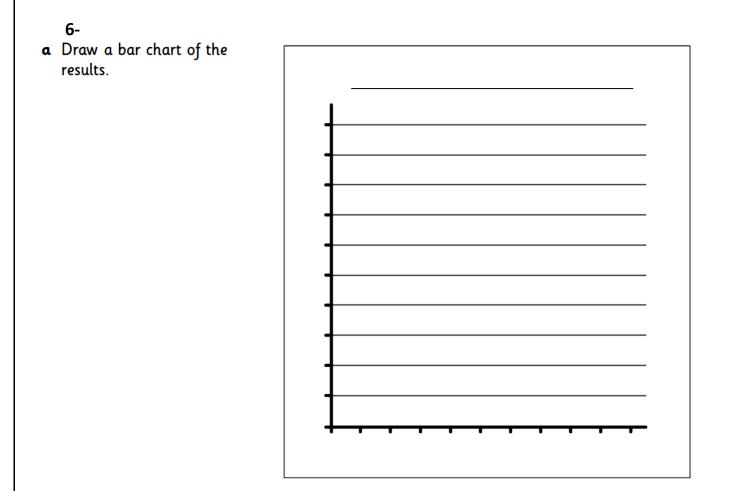
	Distance car moved in cm				
Surface	Test 1	Test 2	Test 3	Average	
grass	11	10	9		
wet tar	19	21	20		
sand	12	14	13		
cement	15	18	18		

1 Why did Pedro and Arturo repeat their measurements?

2 Calculate the average distance the car moved on each surface and write it in the table.

Average= the sum of all the readings on one surface ÷ the number of tests

3- Name the **independent variable** in this investigation?


.....

4- Name the dependent variable in this investigation?

.....

5- Name two controlled variables in this investigation (must stay the same)?

.....

b On which surface did the car move furthest? Suggest a reason for this.

c Suggest a reason why the car did not move far on the grass.

7 Predict how the results would be affected if the tar surface was dry. Explain why.