

Objective/s:

- Differentiate between the mass of an object and its weight.
- Calculate the weight of an object on Earth.

Q1: Compare between mass and weight in the following table:

	Mass	Weight
Definition:	The amount of matter	The amount of
	in an object.	gravitational force acting
	••••••	on an object.
		•••••••
Unit:	Kg/ gram	Newton (N)
Instrument:	A Balance / A Scale	A Force meter
Does it change when you go to another planet?	Νο	Yes, according to the gravitational strength of the planet.

Q2:

a) A group of friends were measuring their mass and weight on Earth. Complete the table below to see their results.

Names	Mass	Weight on Earth
Costa	65 kg	65 × 10= 650 N
Hashem	900÷10=90 Kg	900 N
Rayn	91 Kg	91×10= 910 N
Joseph	550÷10=55 Kg	550 N

b) An astronaut stands on a weighing scale on Earth, it gave a reading of 80 Kg.

The astronaut travels to **planet (A)** which has a gravitational force that equals

half (1/2) of the gravitational force of Earth.

Calculate the following:

The astronaut's mass on Earth:	80 Kg
The astronaut's weight on Earth:	80 ×10= 800 N
The astronaut's mass on planet A:	80 Kg
The astronaut's weight on planet A:	½ × 800= 400 N
The astronaut's mass on Jupiter:	80 Kg