Sodium hydroxide solution reacts with carbon dioxide in the air and should be 2 standardised before use. Ethanedioic acid may be used for this standardisation. (a) A standard solution of ethanedioic acid, (COOH)2, is prepared. 2.40 g of solid ethanedioic acid is dissolved in approximately 100 cm³ of deionised water in a beaker. The solution is transferred into a 250.0 cm³ volumetric flask and made up to the mark with deionised water. (i) Give a possible reason why any solution remaining in the beaker is washed into the volumetric flask before making up to the mark. (1) solution; left behind. (ii) Calculate the concentration of this standard solution of ethanedioic acid in mol dm⁻³. Give your answer to an appropriate number of significant figures. [Molar mass of ethanedioic acid = 90.0 g mol^{-1}] (2)- 0.100 mol. dm3 0 25 | (b) A different
concentrati | | ım hydroxide | | | | | | | | |---|--------------|----------------|---------------------------|------------|----------------|------------|-----------|----------|-------| | Procedure | | | | | | | | | | | Step 1 A bu | | | | | | | | | | | Step 2 The burette is then rinsed with 0.0900 mol dm ⁻³ ethanedioic acid and filled with this acid solution. | | | | | | | | | | | Step 3 A pipette is used to transfer 25.0 cm ³ portions of solution J to conical flasks. | | | | | | | | | | | phe | nolphthalein | | | | | | | | | | (i) Explain | why the bure | ette is rinsed | with etha | nedioic ac | id solu | ution i | n Step 2. | (1) | | | | てっ | (ens re | Me | mhr, | [2 | <u>;</u> } | مددول | 4 | | | | chance | M | Concen | K-HVN | d | M | ucid, | | | | | - | ren ding. | 25 cm
± 0.06
B20 °C | | pipett
mark | | cr_b (| h M | | | | | | | | | | | # | | | bollom | h dt | Me minis | (~) . | (he p | | / - /5 | 1 | L M | mo (K | | 6 | = 60kto | n d | γĸ | minus-1 | y ha | _ 11 | be A | (iii |) The student completely empl | tied the pipette for eac | h transfer in Ste | p 3 . | | |---|--|--------------------------|-------------------|--------------|--| | Explain the effect on the titre of completely emptying the pipette rather to leaving a small amount of solution in the tip. | | | | | | | | | | | | | | (îv) |) State the colour change in th | ne conical flask at the | end-point. | | | | | From <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u> | to | ر دما، داده | (2 | | | c) Th | e titration results are shown. | | 40 | | | | | Titration | 1 | 2 | 3 | | | | inal reading / cm³ | 25.05 | 26.60 | 25.50 | | | Titration | 1 | 2 | 3 | |------------------------------------|--------|----------|-------| | Final reading / cm³ | 25.05 | 26.60 | 25.50 | | Initial reading / cm³ | ✓ 0.00 | 2.00 | 1.00 | | Titre / cm³ | 25.05 | 24.60 | 24.50 | | Titres used in calculation of mean | | / | | (i) Complete the table and calculate the mean titre. alculate the concentration of the sodium hydroxide solution in mol dm⁻³. he equation for the titration is (Total for Question 2 = 15 marks)