Sammy

You are provided with

- A stoppered tube containing powdered zinc.
- Aqueous copper(II) sulphate, CuSO₄, concentration 0.50 mol dm⁻³, labelled H.

You are required to measure the temperature change when excess zinc reacts with copper(II) sulphate solution.

$$Zn(s) + CuSO_4(aq) \rightarrow Cu(s) + ZnSO_4(aq)$$

(a) Procedure

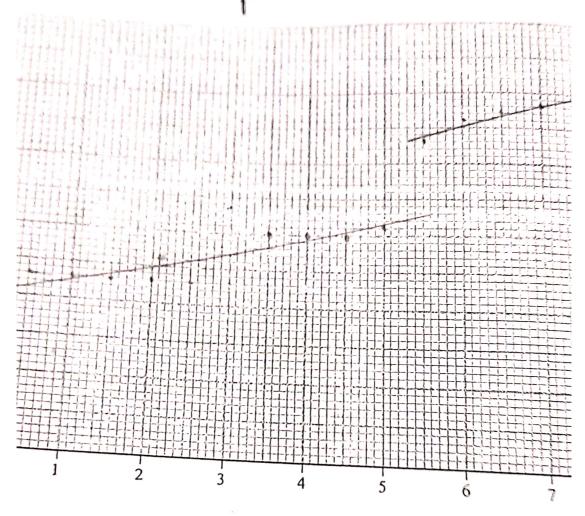

- 1. Use a measuring cylinder to transfer 50 cm³ of solution H to a dry polystyrene cup firmly held in a 250 cm³ beaker. Place the thermometer in the solution in the polystyrene cup.
- 2. Read the temperature of the solution and record it, to the nearest degree, in Table 2.
- 3. Continue to record the temperature of the solution at half-minute intervals.
- 4. At exactly 3.0 minutes, add the zinc powder to the polystyrene cup, stirring wit the thermometer as you do so.
- 5. While continuing to stir with the thermometer, record the temperature of the solution in the polystyrene cup every half minute from 3.5 to 8.0 minute Record all the temperatures, to the nearest degree, in Table 2.

Table 2

Time / min	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	
Temperature / °C	73	23	23	23	23	23		30	30	
Direct ext and										
Time / min	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0		
Temperature / °C	30	31	43	76	47	48	48	48		

9810

(b) On the good below plot a graph of temperature against time.

Time/minutes

Calculations

From your graph find the maximum temperature change, ΔT , for the rea your graph show how this was calculated. Give your value of A? to the

$$\Delta T = \dots$$
, $M = \infty$

$$\Delta T = \dots , \Lambda \dots \circ C$$

1

(1)

(iii) Calculate the heat evolved in the reaction. Include units with your answer.

Assume that the total mass of the solution is 50 g and that the specific heat capacity of the solution is $4.18 \, \mathrm{J \, g^{-1} \, ^{\circ} C^{-1}}$.

$$Q = M(D)$$
= $S_0 \times 9/8 \times 29$
= $S_0/6 = S_0/6 \times 3$

(iv) Use your answers from (c)(ii) and (iii) to calculate the molar enthalpy change for the reaction. Give your answer in kJ mol⁻¹ and to two significant figures. Include a sign with your answer.

$$\Delta H = -Q$$

$$\Delta H = -\frac{5.016}{0.07}$$

$$\Delta H = -\frac{1}{2}(9).0 \text{ kJ most}$$

A student suggests repeating the experiment using 100 cm³ of the same copperulphate solution and twice the mass of zinc. What effect, if any, will this have ne temperature change? Explain your answer.

grenter	templiature	Chuna	Shae	arute	Cromatic	Cal.
J		20		<u></u>	λ	•••••
						•••••

(Total 15 ms