(ii) Calculate the amount (moles) of copper(II) sulphate, CuSO₄, in 50 cm³ of 0.50 mol dm⁻³ solution.

(1)

(iii) Calculate the heat evolved in the reaction. Include units with your answer.

Assume that the total mass of the solution is 50 g and that the specific heat capacity of the solution is $4.18 \text{ J g}^{-1} \,^{\circ}\text{C}^{-1}$.

(iv) Use your answers from (c)(ii) and (iii) to calculate the molar enthalpy change for the reaction. Give your answer in kJ mol⁻¹ and to two significant figures. Include a sign with your answer.

$$\Delta H = -\frac{G}{h} = -\frac{3.2395}{0.025} = -129.58$$

 $\Delta H = \frac{-130}{100}$ kJ mol⁻¹

(d) A student suggests repeating the experiment using 100 cm³ of the same copper(II) sulphate solution and twice the mass of zinc. What effect, if any, will this have on the temperature change? Explain your answer.

1 |38|||2| 222 |||32 |||10 tons tons

. 1	- 6	1	
11	W.II	decorner	
		Cuase	١,

(1)

Q3

(Total 15 marks)